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It is a well-known fact that the classical flow with free boundaries formulated by 
Kirchhoff in 1869 set the stage for the theoretical investigation of separated incompressible 
fluid flow around bodies. The complexity of the problem has been well perceived by research- 
ers, who have therefore embraced the model approach, as nowhere else in fluid dynamics, in 
order to simplify the given problem to the maximum. It became clear in the thirties and 
forties that the model approach using flows with free boundaries permits the separation flow 
of an incompressible fluid around bodies to be described quite closely to the experimental 
results in fully developed cavitation regimes, where a cavity formed by flow separation is 
completely filled with vapor or gas, i.e., in application to two-phase fluid flows, but this 
approach does not afford a description of single-phase fluid flows that adequately represents 
the experimental results. Model flows with free boundaries were proposed during this period 
and could be used to describe flow around bodies for nonzero values of the cavitation number 
Q = 2(p~ - p0)/pv~ (P0 is the pressure in the cavity), where Q = 0 corresponds to Kirchhoff 
flow, and it was regarded as the limiting flow state to which model flows should converge as 
Q ~ 0. Indeed, the values of the drag coefficient c x determined according to the Zhukovskii- 
Roshko, Ryabushinskii, and Efros schemes for a flat plate oriented perpendicular to the 
direction of the freestream velocity differ somewhat for Q # 0, tending to the Kirchhoff 
value c x = 2~/(~ + 4) in the limit Q ~ 0. 

However, the transition from Q = 0 in Kirchhoff flow to Q # 0 required the insertion of 
additional bodies (plates) in the flow if the flow took place on one sheet of a Riemannian 
surface (Zhukovskii-Roshko and Ryabushinskii schemes) or the application of an auxiliary 
second sheet of the Riemannian surface (Efros scheme); this violated the customary hydrodynam- 
ic statement of the problem of an unbounded ideal fluid flow around an isolated body and left 
unresolved the question of the additional (under the mutual influence of the target body and 
the streamline-closing bodies) increment or decrement of its drag c x. These models also 
failed to account for the existence of vortex flow in the wake of a real cavity (vortex 
shedding), because, e.g., the generation of a return stream takes place in Efros flow without 
regard for the influence of the displacement thickness of the vortex flow in the wake, despite 
the fact that the displacement thicknesses in a real cavitation flow and the transverse width 
of the body are of the same order of magnitude. 

These considerations, along with other questions that have clouded the issue so far in 
connection with the unsteadiness (time dependence) of a real cavitation flow and the mechanism 
of kinetic energy dissipation of the fluid, motivated one of the present authors to describe 
cavitation flows by an energy approach, which permits a less detailed description of the flow 
than is required by the force approach, but takes into account the governing characteristics 
of a real flow, one of which is the existence of vortex shedding from a cavity. 

In the model of a second dissipative layer and wake [i], the vortex flow in the vicinity 
of the wake is modeled by a displacement half-body, which is inserted into the potential flow 
behind the main body. The dimensionless thickness ~ = 6~/b of the displacement half-body at 
an infinite distance behind the main body is related to c x by the equation ~=6~=%/2 (6~ 
= 6~/b is the dimensionless momentum loss thickness, and b is a characteristic width of the 
body). 

Normally in applications of the model of a second dissipative layer and wake to problems 
of viscous fluid flow around bodies, the displacement half-body is reproduced by means of a 
source located on the aft side of the body [i, 2]. However, if the source is placed behind a 
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cavity in the given cavitation flow situation, theactual process of return-stream generation 
can be distorted by the strong local perturbation created by the source. Clearly, the smal- 
lest local perturbation is introduced by a displacement half-body formed by two parallel 
plates separated by a distance d = 65. Now, in addition to the well-known one-parameter 
family of Efros flows (with the cavitation number Q as the parameter), it is also necessary 
to consider a new two-parameter family of flows (with independent parameters Q and d), which 
have two return streams located symmetrically about the x axis with a combined thickness 6 
[3]. 

Sadovskii [4] has investigated the solution of the flow problem according to a new 
scheme, where a plate is situated perpendicular to the direction of the freestream velocity 
(Fig. I), determining the domain of admissible values of the independent mathematical parame- 
ters h and c (which are bound by a definite relation in Efros flow and plotting analytical 
graphs of the total thickness of the return streams as a function of d for several values of 
Q. 

If these quantitative data are introduced in the theory of quasisteady separated flow 
around bodies [3] formulated within the context of the model of a second dissipative layer 
and wake, and if the theoretical predictions are compared with the results of experiments on 
the value of c x for a plate oriented perpendicular to the direction of the freestream veloc- 
ity, the theoretical description is observed to match the experimental results adequately not 
only in the case of separated flows with fully developed cavitation (0 < Q < I), but also for 
the separated flow of a single-phase fluid flow (according to the theory, the maximum possible 
value c x = 2.0 practically coincides with the value of c x in a single-phase fluid, which has 
long been known from experimental work). 

In the present article we investigate the age-old question raised by Kelvin [5] in 
connection with classical Kirchhoff flow and discussed repeatedly in later studies (see, 
e.g., [6]), as to the physical applicability of mathematical flows with free boundaries for 
the description of separated flow around bodies. 

The relationship between the new two-parameter family of flows with free boundaries and 
the well-known one-parameter Efros and Zhukovskii-Roshko flows has been established previously 
[4] [either of these represents limiting (boundary) terms of the two-parameter family]. The 
upper curvilinear part I of the boundary h = h(c) of the domain of the two-parameter family 
in the plane of the parameters h and c in Fig. 2 describes the family of Efros flows, and the 
lower boundary h E 0 describes Zhukovskii-Roshko flows. For a constant value of the cavita- 
tion number (Q > 0), as the distance between parallel plates is varied continuously from d = 
0 to dmax(Q) (points P and S in Fig. 2, which are associated with Efros and Zhukovskii-Roshko 
flows, respectively), the operating point moves along the curve PS in the domain of the 
two-parameter family with a continuous variation of the total thickness of the return streams 
from 6max(Q) to 6 = O. Consequently, for Q > 0 the set of possible flows with finite thick- 
nesses of the return flows and displacement half-bodies completely describes the investigated 
two-parameter family. 

The following characteristics of the limiting transitions observed in [4] with respect 
to the parameters h and c to the point h = C = 0 (Q ~ 0) are significant in the ensuing 
discussion: 

i. As the origin (Fig. 2) is approached along the upper boundary i (i.e., within the 
framework of the family of Efros flows, where h = c 2 + c 3 + 3c 4 + ... as c ~ 0), the results 
obtained in the limit for d, 6, and c X are well known, viz.: Kirchhoff drag c~ = 2~/(~ + 4), 
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a finite value of the stream thickness 7, = ~/[2(~ + 4)], and zero thickness of the wake d = 
0. 

2. The result of passage to the limit along the lower boundary 5 (h ~ 0, c ~ 0) is also 

w e l l  known: 6 = O, d~,~ ~/[2c(~ + 4)]--~oo,  c x = c ~  ~ -  2~/(~ ~ 4 ) .  

3. If h = c 2 + ~c~(~<I) and c ~ 0 (curve 2, which has the same curvature as the Efros 
boundary I), then ccx = 2~/(_~ + 4) in the limit, but the two return streams are separated by 
a wake of finite thickness d = 9(1 - ~)/[2(~ + 4)], which is determined by the coefficient ~. 
The total thickness of the streams, on the other hand, is equal to the Efros limiting value 

= ~ .  = ~ / [ 2 ( ~  + 4 ) ] .  

4. If h = ~c 2 (0 < ~ < I; curve 3 in Fig. 2, which has a smaller curvature than i), the 
same Kirchhoff drag c x = 2~/(~ + 4) is obtained in the limit c ~ 0, but the total thickness 
of the return streams is ~ = ~2/[2( ~ + 4)] and can assume values in the interval 0 < 6 < 6, 
depending on ~. The distance between the streams is d= ~(i --a)/[2c(a + 4)]-+~, but the 
ratio of d to the principal cavity diameter is finite and smaller than unity in the limit. 

5. The passage to the limit c ~ 0 under the condition h~cV(?>2), i.e., along curve 
4, which is next to the Zhukovskii-Roshko boundary 5 in curvature, also gives a result similar 
to  c a s e  2: c x = c x  = 2~/(~ + 4). 

These  d a t a  n o t  o n l y  i n d i c a t e  t h e  ab u n d an t  c o n t e n t  o f  t h e  t w o - p a r a m e t e r  f a m i l y  a t  t he  
singular point h = c = 0, but also afford the possibility of comparing these limiting flows 
both with each other and with the classical Kirchhoff flow (Q = 0); such a comparison has 
been excluded from any consideration to date. 

It was remarked above that in all the limiting (Q ~ 0) cases of flow around a plate 
oriented perpendicular to the freestream direction its drag is the same and equal to the drag 
on a plate in Kirchhoff flow. 

A visual picture of the difference in the global geometrical pattern of the flows can be 
obtained by analyzing them in the compressed variables X = x/L, Y ~ y/]fL, where L is the 
longitudinal dimension of a cavity in Efros flow in the limit Q ~ 0, referred (like x and y) 
to the length of the plate. The boundaries of the limiting flows are shown qualitatively in 
these variables in Fig. 3, viz.: i) the Kirchhoff family Y ~ ~; 2) the Zhukovskii-Roshko 
family; 3) the two-parameter family in the limiting transition 4; 4) the Efros family~ 
Naturally, the plate shrinks to a point in these coordinates, and the return streams are 
reduced to lines, segments of which are shown in Fig. 3. We see that the mass of the rest 
fluid in Kirchhoff flow is infinitely times as great as the analogous mass in all the limiting 
flows; of these, Efros flow has the minimum mass. There is one other distinctive feature to 
consider. The drag on the plate in Kirchhoff flow is associated with momentum losses in the 
external flow. In the Efros flow limit, exactly the same drag is attributable to the forma- 
tion of a return stream. In intermediate limiting flows of the two-parameter family (line 3 
in Fig. 3) the same drag is now created by the action of both factors. 

Consequently, not only the difference in the flow geometry observed in Fig. 3, but also 
the difference in the physical mechanism responsible for the creation of drag makes the Efros 
flow irreducible to Kirchhoff flow in the limit Q ~ 0; an infinite number of flows occurs 
between them with a smaller total thickness of the return stream than in Efros flow, but with 
the same drag~ For this reason, it is impossible to concur with the viewpoint taken in the 
literature on cavitation flows, that as Q ~ 0 Efros flow goes over to Kirchhoff flow possess- 
ing a nonvanishing return stream with its base infinitely far away. Moreover, the investiga- 
tion of the properties of the two-parameter family of flows with free boundaries and the 
results of the theory of quasisteady separated flow around bodies permits a new approach to 
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the age-old question as to the applicability of mathematical flows with free boundaries for 
the description of separated flows and jet flows; Kelvin raised this question back in 1894, 
at which time [5] (see also [6, 7]) he expressed skepticism about the possibility of describ- 
ing separated flow around bodies theoretically bymeans of mathematical flows with free 
boundaries (with specific reference to Kirchhoff flow), but regarded the free-boundary flow 
introduced by Helmholtz in 1968 as physically applicable for the theoretical description of 
processes associated with the flow and interaction of fluid jets. 

Kelvin saw the main flaw of Kirchhoff flow in the fact that the "dead water" following a 
plate of unbounded mass must have infinite kinetic energy. Despite the subsequent repeated 
contention of other authors (see, e.g., [6]) with Kelvin's reasoning, the results of model 
studies, including those cited in the present study, vindicate Kelvin and attest to the power 
of his physical foresight. The inapplicability of Kirchhoff global flow for the description 
of separated flow around bodies because of the excessive volume of the "dead water" and the 
applicability of flows with free boundaries for describing the flow and interaction of jets 
have been corroborated. First, it is evident from Fig. 3 that the volume of the detached 
zone in Efros flow is infinitely times as small as the detached zone in Kirchhoff flow; 
second, the drag acting on the body in Efros flow is created by the flow of the return stream 
and the associated loss of momentum, and not by the loss of momentum in the external flow as 
in the case of Kirchhoff flow. 

The latter fact has proved to be very important in the energy approach to the theory of 
separated flow around bodies insofar as the drag-induced dissipation of kinetic energy of the 
return stream could be incorporated into the model. The consistency of the drag coefficient 
governed by the dissipation of kinetic energy of the return stream and the thickness of the 
displacement half-body used to model vortex shedding ensures that the description of the 
behavior of c x or a plate in a two-phase fluid will adequately represent the experimental 
data and that will have the correct value in a single-phase fluid, and it allows the flow 
field to be described reliably with increasing distance from the symmetry plane. 

The model requirements on the consistency of c x for a plate, dissipation, and the dis- 
placement thickness of the vortex wake are satisfied on the dashed curve MN on the plane of 
the mathematical parameter (h, c) in Fig. 2. As the operating point moves along this curve 
from point M to point N, all the model flows corresponding to a variation of the cavitation 
number from Q = 0 to Q = ~ are traversed accordingly in the physical plane. It is interesting 
to note that the line of the flows admitted by the model lie entirely within the domain of 
the new two-parameter family of flows and nowhere coincides with the Efros and Zhukovskii- 
Roshko one-parameter flow families as the latter are approached. 

Thus, aside from physical reality, the Efros and Zhukovskii-Roshko mathematical flows, 
and not just the mathematical flow of Kirchhoff, remain in the model description of separated 
flow around bodies. However, Kirchhoff flow with the wake expansion law Y = ~ preserves its 
fundamental status in fluid dynamics, because it is known [8] to determine the limiting, 
physically admissible rate of expansion of a half-body in an unbounded plane-parallel inviscid 
incompressible fluid flow. Consequently, in the modeling of nonseparated viscous vortex flow 
around bodies by potential flows augmented by displacement half-bodies, as is done in applica- 
tions of the model of a second dissipative layer and wake to highly viscous flows in the 
limit Re ~ 0 [9], the limiting physically admissible rate of expansion of the displacement 
half-body is determined by the law Y - ~, i.e., by the law of expansion of the "dead water" 
zone in Kirchhoff flow. The "dead water" volume, which is too large for separated flows with 
finite values of c x for a body in the flow and has prevented the application of Kirchhoff 
flow for the descriptio n of separated flows since Kelvin's time, does not preclude the physi- 
cal realization of the model flow after an infinite time in the limit Re ~ 0, because the 
drag coefficient c x of the body in the planar problem of viscous fluid flow tends to infinity 
as Re ~ O. 
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